

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

COMBINED SCIENCE

0653/32

Paper 3 Theory (Core)

May/June 2025

1 hour 15 minutes

You must answer on the question paper.

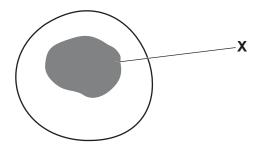
No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.
- Take the weight of 1.0 kg to be 9.8 N (acceleration of free fall = 9.8 m/s²).

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.


This document has 20 pages. Any blank pages are indicated.

DC (PB/SG) 345643/2 © UCLES 2025

[Turn over

1 (a) Fig. 1.1 shows a white blood cell.

2

Fig. 1.1

	circular DNA	large vacuole	plasmid	[2]
	cell membrane	cell wall	cytoplasm	
iii)	(Circle) two structures for	ound in both white blood cells an	d bacterial cells.	
				[1]
(ii)	State one function of w	hite blood cells.		
				[1]
(i)	Name the part labelled	X on Fig. 1.1.		

(b) Blood is part of the circulatory system.

Complete the sentence to describe the circulatory system.

The circulatory system is a system of blood with a pump

and to ensure one–way flow of blood.

[2]

(c) Fig. 1.2 is a graph that shows the heart rate of a person during and after physical activity.

3

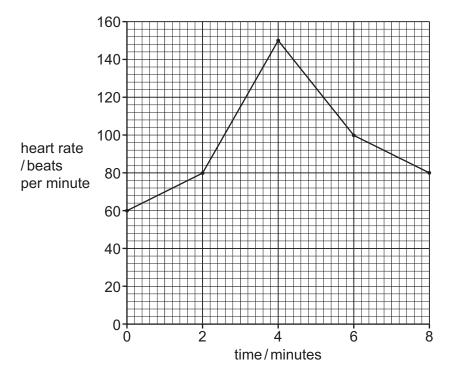


Fig. 1.2

Calculate the percentage increase in heart rate between 0 minutes and 4 minutes of physical activity.

heart rate at 0 minutes of physical activity = beats per minute

heart rate at 4 minutes of physical activity = beats per minute

change in heart rate = beats per minute

percentage increase in heart rate =[3]

[Total: 9]

2 (a) Fig. 2.1 is a diagram of a cross-section through a leaf.

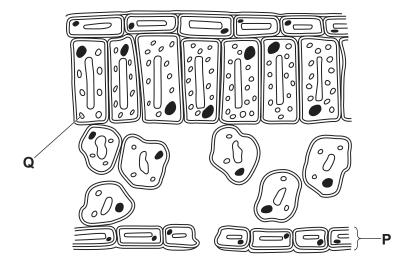


Fig. 2.1

	(1)	Name the part labelled P on Fig. 2.1.	
			[1]
	(ii)	Draw a label line and the letter S to identify a spongy mesophyll cell on Fig. 2.1.	[1]
	(iii)	Name the pigment found in the part labelled Q on Fig. 2.1.	
			[1]
(b)	A pl	ant is left in a warm dark room for three days.	
	Afte	er three days, a leaf from the plant is tested with iodine solution.	
	The	iodine solution stays yellow-brown in colour.	
	Con	nplete the sentences to explain this result.	
	The	yellow-brown colour of the iodine solution indicates that the leaf does not contain	
	The	plant has not photosynthesised because there is no	[0]
			[2]

(c) Fig. 2.2 shows part of a food web.

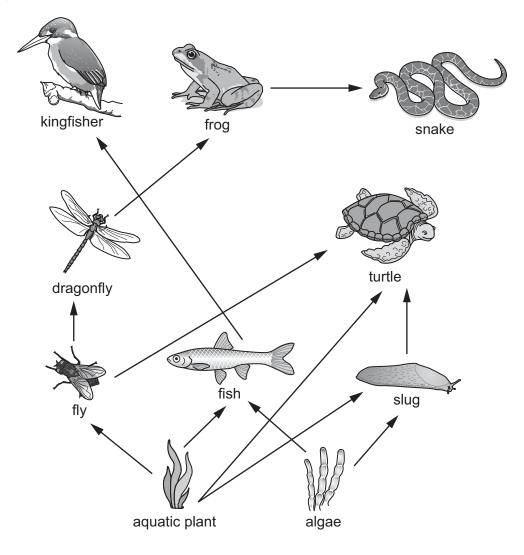


Fig. 2.2

(1)	identity one herbivore in Fig. 2.2.	
		[1]
(ii)	Identify one tertiary consumer in Fig. 2.2.	
		[1]
(iii)	Animals in the food web produce waste organic material.	
	Name the type of organism that gets its energy from waste organic material.	
		[1]
	П	Total: 8

[3]

3 (a) Nutrition is one of the characteristics of living organisms.

State two other characteristics of living organisms.

1	 	 	 	 	

[2]

(b) Table 3.1 shows some information about the digestive system in humans.

(i) Complete Table 3.1.

Table 3.1

organ	function of organ
mouth	and digestion of food
small intestine	digestion and of food into the blood
	egestion of undigested food

(ii) Fats are digested in the small intestine.

- (c) Enzymes are used to digest food in the digestive system.
 - (i) Fig. 3.1 is a graph that shows the effect of pH on the enzyme activity of one enzyme.

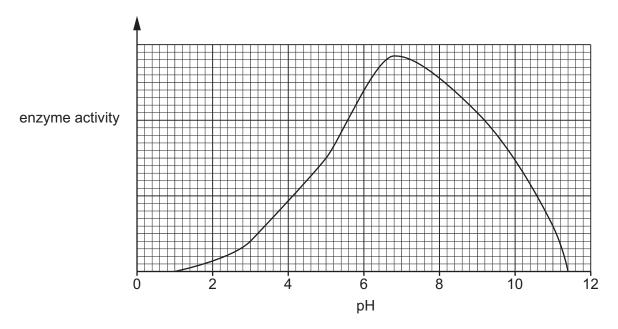


Fig. 3.1

Describe the effect of pH on enzyme activity shown in Fig. 3.1.
Include data in your answer.
[2]
State one factor that affects enzyme activity, other than pH.
[1]
[Total: 10]

(ii)

- 4 (a) Solid sodium reacts with water.
 - (i) Circle the gas that forms when sodium reacts with water.

		carbon dioxide	chlorine	nydrogen	oxygen	[1]
	(ii)	State one way the resodium with water.	·			
b)	Aqu	ieous sodium chloride i	s a mixture of two co	ompounds, sodiu	m chloride and wat	er.
	Stat	te one similarity and or	ne difference betwee	en a compound a	nd a mixture.	
	sim	ilarity				
	diffe	erence				
						[2]
c)	Soli	d sodium is heated to f	orm a liquid.			
	(i)	Tick (✓) all the boxes	that show correct p	properties of a liqu	uid.	
		A liquid cannot be squ	ashed.			
		A liquid has no fixed v	olume.			
		A liquid takes the shap	oe of its container.			
						[1]
	(ii)	The symbol for solid s	odium is Na(s).			
		Complete the symbol	for liquid sodium by	adding the miss	ing state symbol.	
		Na()				[1]

(e)

(d) The noble gases are in Group VIII of the Periodic Table.

Exp	plain how the electronic configuration of neon affects its reactivity.	
		[1]
	·	
Nitr	ogen is a gas.	
/:\	State the percentage of pitrogen are in clean, dry air	
(i)	State the percentage of nitrogen gas in clean, dry air.	
	%	[1]
<i>(</i> 111)		
(ii)	Oxides of nitrogen are air pollutants.	
	State one source of these oxides of nitrogen.	
		[1]
/:::\	State and adverse effect of eviden of nitrogen	
(iii)	State one adverse effect of oxides of nitrogen.	
		[1]
	·	

9

[Total: 10]

[2]

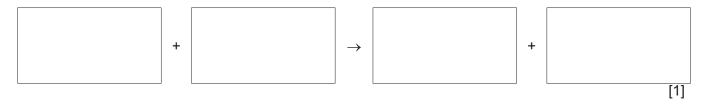
5 (a) Iron is a transition element.

Tick (\checkmark) **two** boxes that show correct statements about the properties of iron and Group I elements.

10

Iron and Group I elements conduct electricity.

Iron has a higher melting point than Group I elements.


Group I elements have a higher density than iron.

Group I elements form coloured compounds but iron compounds are white.

Group I elements form coloured compounds but iron compounds are white.

(b) Iron reacts with dilute hydrochloric acid.

Write the word equation for the reaction.

(c) Fig. 5.1 shows three identical iron nails, each in a different test-tube, A, B and C.

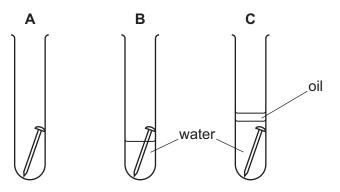


Fig. 5.1

Predict in which test-tube the iron nail rusts most quickly.

Explain your answer.

(d) Iron is extracted from iron(III) oxide in a blast furnace.

$$\text{Fe}_2\text{O}_3$$
 + 3CO \rightarrow 2Fe + 3CO $_2$

11

Circle the type of reaction when iron(III) oxide forms iron.

	combustion	oxidation	reduction	separation	[1]
(e)	Aluminium is extracted to Name the main ore of all				ניו
					[1]
(f)	Part of the reactivity ser	ies is shown.			
		sodium			

magnesium

carbon

zinc

hydrogen

copper

- (i) Use this reactivity series to name:
 - one metal that must be extracted by electrolysis

one metal that is extracted by heating with carbon.

(ii) Explain why different methods of extraction are needed for the two metals in (f)(i).

[Total: 10]

[2]

[1]

- **6** Hydrogen peroxide, H₂O₂, decomposes into water and oxygen when a catalyst is added.
 - (a) Balance the symbol equation for the reaction.

$$..... \mathsf{H}_2 \mathsf{O}_2 \, \rightarrow \, \mathsf{H}_2 \mathsf{O} \, + \, \mathsf{O}_2$$

[1]

[1]

(b) The oxygen is collected and tested.

Describe the test for oxygen gas.

State the observation for the positive result.

test

(c) Anhydrous cobalt(II) chloride is used to test for water.

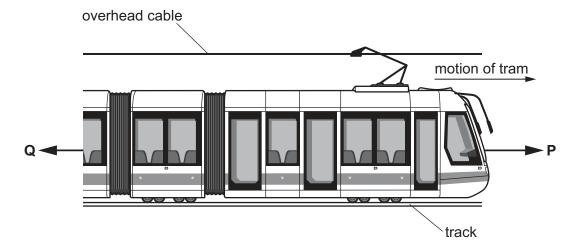
State the colour observed for a positive result.

(d) Describe what is meant by a catalyst.

•••
12

(e) The temperature of the hydrogen peroxide is increased. All other conditions stay the same.

Predict the effect of this change on the reaction.


.....[1]

[Total: 6]

BLANK PAGE

7 Fig. 7.1 shows a tram powered by electricity supplied through overhead cables.

14

Fig. 7.1

(a) Forces P and Q act on the tram as it moves along a level track.

Force P has a magnitude of 2400 N.

Force **Q** has a magnitude of 1900 N.

(i) Name force Q.

.....[1]

(ii) Calculate the resultant force acting on the tram.

resultant force = N [1]

(iii) Describe the motion of the tram.

.....[1]

* 0000800000015 * DFD

(b) The mass of the tram is 35000 kg.

Calculate the weight of the tram.

weight =	NI	[2]
weignt -	 1.4	[4]

(c) Later in its journey, the tram moves up a hill at constant speed.

Complete the sentence about energy transfers.

Energy is transferred to the energy store of the tram

15

and the thermal energy stores of the tram and the surroundings.

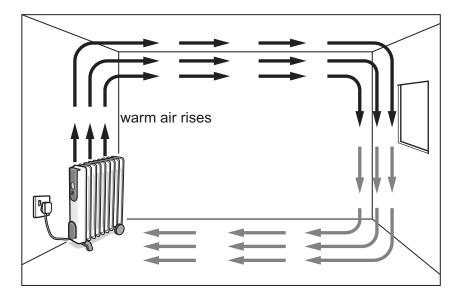
(d) On one journey, the tram travels for 0.24 h.

The electrical power input to the tram is 55kW.

Energy is supplied at a cost of \$0.25 per kWh.

Calculate the total energy cost for this journey.

[Total: 9]


[1]

[1]

DO NOT WRITE IN THIS MARGIN

8 Fig. 8.1 shows an electric heater that heats a room.

16

Fig. 8.1

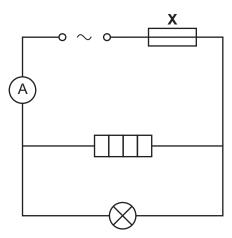
(a) (i) Circle the correct word in **bold** to complete the sentence.

The warm air above the electric heater rises. Thermal energy is mainly transferred around the room by **conduction** / **convection** / **radiation** .

(ii) When air is heated, its temperature and volume increase.

Explain why this happens.

Use ideas about particle motion and separation in your answer.


temperature increases because

volume increases because.....

[2]

(b) Fig. 8.2 shows a circuit diagram for the electric heater.

17

Fig. 8.2

The current in the electric heater is 3.2A.

(i) Name component X.

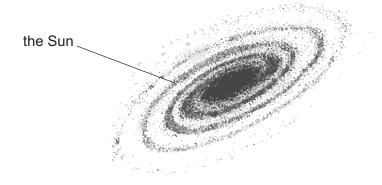
[1	1
	J

(ii) The resistance of the heater is 35Ω .

Calculate the voltage of the power supply.

(iii) The current in the lamp is 0.20A.

Determine the reading on the ammeter.


(c) State the difference between direct current (d.c.) and alternating current (a.c.).

[Total: 9]

9 (a) Fig. 9.1 is a drawing of our galaxy showing the approximate location of the Sun.

18

Fig. 9.1

(i)	Name our galaxy.
	[1]
(ii)	The Sun is a distance of 25 000 light-years from the centre of our galaxy.
	State the time taken for light to travel from the Sun to the centre of our galaxy.
	Include the unit in your answer.
	time = unit[1]
(iii)	Most of the energy radiated from the Sun is in three regions of the electromagnetic

spectrum.

One of these regions is visible light.

On Fig. 9.2, tick (\checkmark) **two** boxes to show the other two regions.

gamma radiation	X-rays	ultraviolet	visible light	infrared	microwaves	radio waves		
			✓					

Fig. 9.2

[2]

(b) Electromagnetic radiation of wavelength 6.0×10^{-7} m travels through space at a speed of 3.0×10^8 m/s.

Calculate the frequency of the radiation.

Include the unit in your answer.

(c) An astronomer looks at a distant star.

Fig. 9.3 shows the astronomer's eye and two parallel rays of light from the distant star.

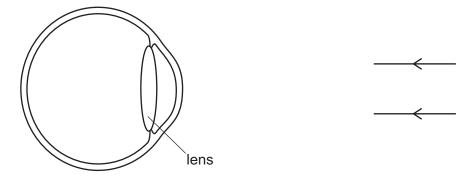


Fig. 9.3

Complete Fig. 9.3 to show the two rays focused onto the back of the astronomer's eye by the lens.

[2]

[Total: 9]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

												ll																		
	IIIA	2	He	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	52	Xe	xenon 131	98	Ru	radon	118	Og	oganesson —								
	II /				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	Ā	bromine 80	53	н	iodine 127	82	At	astatine -	117	ြ	tennessine -								
	>				8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ъо	polonium –	116	^	livermorium —								
	>		-				7	z	nitrogen 14	15	凸	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	<u>B</u>	bismuth 209	115	Mc	moscovium -						
	2												9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Ър	lead 207	114	Εl	flerovium -
	=				5	В	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	lΤ	thallium 204	113	R	nihonium —								
											30	Zu	zinc 65	48	рО	cadmium 112	80	Hg	mercury 201	112	C	copernicium —								
											29	Cn	copper 64	47	Ag	silver 108	79	Αn	gold 197	111	Rg	roentgenium -								
Group											28	z	nickel 59	46	Pd	palladium 106	78	ᇁ	platinum 195	110	Ds	darmstadtium 								
Gro											27	රි	cobalt 59	45	格	rhodium 103	77	기	iridium 192	109	M	meitnerium —								
		- :	I	hydrogen 1							26	Ь	iron 56	44	Ru	ruthenium 101	9/	Os	osmium 190	108	H	hassium -								
											25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium —								
						pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≯	tungsten 184	106	Sg	seaborgium -								
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	qN	niobium 93	73	Та	tantalum 181	105	Op	dubnium —								
									atc	rek				22	j=	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	弘	rutherfordium —					
											21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids									
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	56	Ва	barium 137	88	Ra	radium -								
	_				3	:-	lithium 7	11	Na	sodium 23	19	¥	potassium 39	37	S S	rubidium 85	22	S	caesium 133	87	Ţ.	francium -								
						_																								

20

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

© UCLES 2025

